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Abstract. The phase transitions of the cubic and chiral cubic models are studied using 
mean-field and Monte Carlo combined with finite-size scaling methods. The critical 
exponent of the specific heat for the N = 3 cubic model in d = 3 dimensions is in agreement 
with the experimental data. The large-N behaviour of both systems suggests that in the 
large-N limit the mean field is exact. 

1. Introduction 

Two models for spin systems have been of special interest for workers in the field of 
particle physics; these are the cr-models and chiral models. 

The O(N)-models are a prototype for the u-models and are defined by the 
Hamiltonian 

where the sum is over the nearest neighbours and Si is an N-component vector of unit 
length. We have stopped at the first two terms in the powers of (SiSj). 

Chiral models are defined taking a group G with elements g and defining the 
Hamiltonian: 

where xA is the character function corresponding to the irreducible representation A 
of G. The Hamiltonian (1.2) has GOG as symmetry. In this paper we concentrate 
on the case where the group G is O ( N ) .  

The partition function is defined as 

(1.3) 
and we take ferromagnetic interactions. 

The original reason for our study was to check if it is possible to approximate the 
continuous manifolds which are the N-dimensional sphere (for equation (1.1)) and 
the group manifold (for equation (1.2)) through discrete manifolds. One would expect 
that such an approximation should be appropriate at large temperatures. The interest 
of this approximation covers especially the large-N case where Monte Carlo simulations 
on the original manifolds are difficult. 

0305-4470/85/040653 + 08$02.25 @ 1985 The Institute of, Physics 653 



654 R Badke, P Reinicke and V Rittenberg 

Let us remind the reader that in the large-N limit, 

T N =  f (fixed), ( 1.4) 

the O(N)-model is equivalent to the spherical model (Stanley 1968) and the chiral 
model (Heller and Neuberger 1982) is equivalent to the quenched model (Eguchi and 
Kawai 1982). 

A discrete approximation to the N-dimensional sphere is the N-dimensional cube 
which is defined through an N-component vector of unit length 

sf= 1 (1.5) 

and the components are taken over integer numbers. Obviously each component can 
take the values i 1. With this constraint, the O( N)-model becomes the discrete cubic 
model (Aharony 1977). The symmetry of the model is that of the N-dimensional cube 
W N  (the German word for cube is Wiirfel). This is the discrete subgroup of O ( N )  
which is obtained taking N x N orthogonal matrices over integers. The group has 
2 N  N! elements and is isomorphic to the group Z21SN (the wreath product of Z2 with 
the permutation group of N objects). Notice that if we had taken higher powers of 
SiSj in equation ( l . l ) ,  in the discrete approximation all odd (even) powers would be 
lumped together in the first (second) term in (1.1). 

A discrete approximation to the chiral O(N)-model (equation (1.2)) is obtained 
by taking the WN instead of the O( N )  manifold. This defines the discrete chiral cubic 
system. The properties of the WN groups have been intensively studied by Baake 
(1984). A remarkable property of these groups is that for any N, the N-dimensional 
vector and the $ N (  N - I)-dimensional adjoint irreducible representations of O( N )  
remain irreducible if one considers the subgroup of WN. This allows us to give a 
meaningful approximation to the Hamiltonian (1.2) if we restrict the sum over the 
irreducible representations to two of them: 

where V and A denote the vector and adjoint representations. 
We have not studied the possibility of discretising consistently (for all N ! )  other 

coset spaces or group manifolds. 
In § §  2 and 3 we consider in detail the properties of cubic and chiral cubic models 

for small values of N in various dimensions. We restrict ourselves to the choice K ,  = 0 
in equation ( I .  1 )  and aA = 0 in equation (1.6). The study was done using both mean-field 
and Monte Carlo analysis combined with finite-size scaling (see Badke er al 1985 for 
the procedure). We find interesting systems whose properties are summarised in 0 5. 
We discover that at a given dimensionality for larger values of N the mean-field 
approximation gets better and better and that one gets first-order phase transitions 
with an increasing latent heat. This strongly suggests that the large-N limit of the 
cubic and chiral cubic models is mean field. We make our statement more precise: 
we conjecture that the large-N 

T In N = f (fixed) (1.7) 

limit of the cubic and chiral cubic models is mean field. This would generalise a similar 
theorem valid for the N-states Potts model (Mittag and Stephan 1974, Pearce and 
Griffiths 1980, Cant and Pearce 1983). 
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We notice that since our systems undergo a first-order phase transition, for a certain 
value of T say T,, the approximation of the continuous manifold through a discrete 
manifold becomes useless for large N. Indeed, comparing equations (1.4) and (1.7) 
one notices that for continuous systems one gets a fake first-order phase transition at 

1 f 

- 
7, = f, N/ln N. (1.8) 

Since the approximation can be applied only for T >  fc its possible domain of 
applicability is more restricted at large N. 

In order to check our conjecture, in 3 4 we have considered in d = 2 the cubic 
model given by equation (1.1) with both coupling constants K ,  and K 2 .  In two 
dimensions, the system (1.1) is dual to another system with S N  1 Z2 symmetry (Badke 
er a1 1984). We have determined using mean field for, both the original and the dual 
system, the phase diagrams for various N. In this way one gets upper and lower 
estimates for the critical temperatures. Interestingly enough for large N the phase 
diagram becomes a line of fixed T, corresponding to the large-N limit of the 2N-states 
Potts model which is mean field. 

f 

2. The discrete cubic model 

We first write the Hamiltonian ( 1 . 1 )  in a more convenient form (Aharony 1977): 

where 

a = o ,  1; p = 0, 1, . . . , ( N  - 1) 

and 

K ,  = NJz; Kz = NJ( 1 - z). (2.3) 

The phase diagram for N = 3 and d = 2 and 0 S z s 1 has been determined by Badke 
et a1 (1984). Here we specialise to the point z = 1 .  The model for this special choice 
of z has been proposed by Kim et a1 (1979, Kim and Levy (1975) and its experimental 
implications discussed by Kim et a1 (1976). 

The system undergoes one phase transition and the values of critical temperatures 
obtained from mean-field and the Bethe-Peierls- Weiss approximations (Kim and Levy 
1975) are given in table 1. In the mean-field approximation one gets a continuous 
phase transition for N = 2 (Ising) and N = 3 (with a = f) and a first-order transition 
for N 3 4 whereas in the BPW approximation the transition is first order for N 3 3. 

We have performed a Monte Carlo combined with finite-size scaling analysis of 
the model (see Badke et a1 (1984) for details). For d = 2 we find a continuous phase 
transition for N = 2, 3 and 4 and first order for N 3 5 .  For d = 3 we get first-order 
transitions for N 3 4 and for d = 4 we get first-order transitions for N 3 3. The case 
d = 4 and N = 3 is marginal in the sense that the latent heat is small and the data are 
not incompatible with a second-order transition with a large a. 

The critical points are given in table 1 and the critical exponents determined from 
the measurements of the susceptibility ( y /  v) and the specific heat ( a /  v) are given in 
table 2. (We have assumed the hyperscaling relations.) 



656 R Badke, P Reinicke and V Rittenberg 

Table 1. The critical temperature T, for the cubic model for various N and d. The Monte 
Carlo calculations were done on lattices of size nd.  The results for d = 3, N = 2 are from 
Sykes et al (1972) and for d = 4, N = 2 from Gaunt er al (1979). 

kTJdNJ 

d N 9 Monte Carlo BPW Mean field 

2 2 exact (k ing  model) 0.5673 0.721 I 
3 7, 10, 14, 20, 30 0.46i0.01 0.497 0.666 
4 5 ,  7 ,  I O ,  14, 17, 20, 22, 30 0.402 i 0.002 0.394 0.528 
5 7, I O ,  14, 20, 30 0.370 * 0.006 0.335 0.462 

3 2 0.75 18 * 0.000 1 0.822 1 
3 3 , 4 , 5 , 6 , 7 , 8 , 9 ,  IO,  12 0.55i0.01 0.555 0.666 
4 3 , 4 , 5 , 6 , 7 , 8 , 9 ,  I O  0.458 i 0.003 0.426 0.528 

4 2 0.835 f 0.002 0.869 1 
3 3, 4, 5 ,  6 0.577 * 0.003 0.583 0.666 

We first notice that when comparing the Monte Carlo results with those from 
mean-field and the BPW approximations the data are closed for fixed N and higher d 
(this is to be expected) and at fixed d for high N. This suggests that at fixed d the 
large-N limit of the cubic model (here for z = 1) is mean field. We will come back to 
this problem in 0 4. 

We next look at the critical exponents of table 2. For d = 2 we recover the critical 
exponents obtained in the previous paper (Badke et a1 1984). For d = 3 the results 
are new. Notice that we have obtained a large value for a. As suggested by Kim et 
a1 (1976), the model can be used to describe the 5.4K phase transition in HoSb. There 
the specific heat is fitted with (Y = 0.85 k0.l on one side of the critical point and 
(~ '=0.54*0.01 on the other side of the critical point. If one takes the first value 
seriously it is on top of the theoretical prediction. 

Table 2. Critical exponents for the cubic model in two and three dimensions. 

d N 9 a/ lJ (I 

2 3 0.32 f 0.08 0.99 i 0.06 0.66 f 0.03 
4 0.33 * 0.05 1.35 i 0.05 0.8 1 f 0.02 

3 3 -0.4 i 0.2 2.137 i 0.025 0.832 i 0.006 

3. The chiral cubic model 

The models are defined by the Hamiltonian (1.6). We restrict our study to the case 
aA = 0. If we denote by 0 an N x N orthogonal matrix over integers the Hamiltonian 
can be written: 

- H = Tr( OiO:) 
(IJ) 

(3.1) 
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Table 3. Critical points ( Tc) ,  latent heats ( A E )  and discontinuities of the magnetisation 
(Am) for the W, model in the mean-field approximations. 

1 2 0 0 
2 1.0567 0.4572 0.579 1 
3 0.8039 0.7557 0.7841 
4 0.6844 0.8686 0.8603 

For N = 1 we get the Ising model. There are 2N N! matrices per lattice point. We 
define an order parameter m :  

(3.2) 

We have first performed a mean-field calculation. For N a 2 one obtains a first-order 
phase transition. The critical points, the latent heats A E  and the discontinuities in the 
magnetisation m are given in table 3. 

Before we present our calculations we notice that for N = 2 and N = 3 the group 
can be written as a semi-direct product of Abelian groups. Now there is a theorem 
(Drouffe et a1 1979) that any character function on a group which is a semi-direct 
product of Abelian groups can be written as a character function on the Abelian groups 
themselves. This allows us in the case N = 2 to map the eight-states system (3.1) on 
an  eight-states system with Zz I Zz I Z2 symmetry. More precisely this corresponds to 
the point x = 0 in equation (2.10) of Badke et a1 (1984) and all we have to d o  is to 
copy the result for d = 2. 

Thus for N = 2, d = 2 we have a second-order transition with 

(Y = 0.8 1 f 0.02; 71 = 0.33 * 0.05. 

Our Monte Carlo results for d = 2 are shown in table 4 for N = 2, 3, 4 and in table 
5 for d = 3 and N = 2,3. We notice the same pattern as in the previous section. At 

Table4. Critical points, latent heats and magnetisations for the W, model in d = 2 (Monte 
Carlo results). 

N K T J 2  A E J 2 N  Am 

1 1.135 0 0 
2 0.804 * 0.004 0 0 
3 0.67 * 0.01 0.52 * 0.0 I 0.86f0.01 
4 0.61 * 0.02 0.63 f 0.02 0.92 f 0.02 

Table 5. Critical points, latent heats and magnetisations for the W, model in d = 3 (Monte 
Carlo results). 

N KTcI3 A E / 3 N  Am 

1 1.5036i0.0001 0 0 
2 0.916*0.005 0.39 f 0.01 0.68 f 0.02 
3 0.72*0.01 0.67 f 0.02 0.86*0.01 
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fixed N the mean-field results approach the Monte Carlo ones at large d and at fixed 
d, the mean field approaches the correct result for larger N. 

The large-N limit of the mean field gives a first-order phase transition at 

T,= d l k  In N. (3.3) 

We conjecture that in the large-N limit (fixed d )  the chiral cubic models have a 
first-order transition at the same critical temperature. 

4. The large-N limit of the cubic model in two dimensions 

In order to get a better insight into the large-N limit behaviour of the discrete cubic 
model given by equation (2,1), we notice that in d = 2 this model is dual to a model 
with S ,  1 Z2 symmetry given by the Hamiltonian 

The correspondence between J, z and j and 2 is given in equation (4.3) of Badke et 
a1 (1984). 

The point z = i =; in both models corresponds to the 2N-states Potts model where 
we know the exact critical temperature (Wu 1982): 

ln(2 N) ' l2  

In the large-N limit one finds: 

(4.2) 

(4.3) 

We have performed mean-field calculations on both the original model (equation 
(2.1)) and the dual model (equation (4.1)) for N = 3,4, 5 and 6. The results are shown 
in figure 1. 

The normalisation was chosen in such a way that (following equation (4.2)) the 
exact value for z = 4 is at I .o. 

The two mean-field calculations give upper and lower bounds for the true critical 
temperatures. Actually we have noticed in the case N = 3 where the correct critical 
temperatures are known from Monte Carlo calculation (Badke et al 1984) that taking 
the average of the two phase diagrams obtained from the mean field gives results very 
close to the correct ones. 

From figure 1 we learn that for large N the phase diagram reduces to a first-order 
straight line parallel to the z axis corresponding to the critical temperature of the 
2N-states Potts model: 

dJ ln(2N) - '  
Tc = k (7) (4.4) 

The second-order Ising line is squeezed at z = 0. 
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h 42 

2 

Figure 1. The phase diagrams for the cubic model (upper curves) and its dual (lower 
curves) for various values of N. The second-order lines are Ising. The broken lines denotes 
a first-order phase transition; the full lines denote a second-order phase transition. 

For completeness we give the large-N behaviour of mean field for the discrete 

(a)  z < :  
cubic model: 

+.. .  1 
(2N)4" ln(2N) 

- 1 +  
kT, ln(2N) 
Jd N 

AE/dN = 1 - [ 4 ~ / ( 4 N ) ~ ' ] + .  . . 
(b) z>: 

f .  * 
kT, ln(2N) ( 1 - z ) +  1 _.-- - 1 -- 
Jd N N 2 N  ln(2N) 

(4.5a) 

(4.5b) 

A E / d N  = 1 +[(2- z ) /  NI+. . . . 
Notice the different behaviour for z larger and smaller than which can also be 

observed in figure 1 .  

5. Conclusions 

We think that we have clarified the properties of the phase transitions for both the 
discrete cubic and the chiral cubic models for various N. The results are given in 
tables 1-5. One striking new result is the critical exponents for the N = 3 cubic system 
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in d = 3 dimension. The value of a is in agreement with the experimental data (Taub 
er a1 1974). 

The large-N behaviour of both systems (fixed d )  suggests that, in this limit, the 
mean field is exact. We can speculate that the large-N behaviour of any discrete system 
is mean field unless the large-N limit of the symmetry group is a continuous group. 
In the large-N limit, the S N  groups (N-states Potts model), the Zz I S N  groups (cubic 
models) and the WN groups (chiral cubic models) are not continuous groups. This is 
not the case for the vector Potts model (Elitzur er a1 1979, Cardy 1980) where the 
large-N limit of Z N  is a continuous group U( 1) and the limit in this case is not mean 
field. 
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